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Abstract. We consider a wavepacket of a charged particle passing through a cavity filled with
photons at temperature T and investigate its localization and interference properties. It is shown
that the wavepacket becomes localized and the interference disappears with an exponential speed
after a sufficiently long path through the cavity.

1. Introduction

The photons in quantum mechanics can be considered either in an experiment performed
simultaneously on photons and electrons or they can be treated as a background kept fixed
during an experiment. Their role can be significant. It has been known for a long time that
thermal photons can substantially disturb relativistic electron beams in an accelerator [1–3]. It
also has been suggested that the problem of the classical limit of quantum mechanics (at least
the problem of decoherence) can be solved in the presence of a reservoir of photons. Some
models of an interaction of a quantum system with a reservoir confirming the decoherent
behaviour have been discussed in [4–6]. These models are treated as an approximation (the
dipole approximation) to the quantum electrodynamics (QED). Calculations in the standard
QED involve a perturbation series in the fine structure constant. Eventual classical effects of
the photon–electron interaction have to be estimated by an extrapolation (or resummation) of
the perturbation expansion. The vacuum persistence amplitude in the relativistic QED has
been studied by Ford [7]. He discussed a change of the vacuum fluctuations with a change of
the environment’s geometry (the Casimir effect) and its role in the interference experiments.
In such a case the relative strength of the vacuum fluctuations rather than its intrinsic value
(which is infinite) is relevant. A systematic approach to the particle dynamics in a relativistic
QED has been developed by Anastopoulos and Zoupas [8]. These authors first derive the
propagation kernel for the field theoretic density matrix and subsequently reduce it to the one
particle sector.

We discussed QED at finite temperature (reduced to a fixed finite number of non-relativistic
particles) and some approximations to this model in [9]. We pointed out a difficulty (resulting
from the ultraviolet singularity) with some approximations to QED when applied in a discussion
of the decoherence. The vacuum fluctuations lead to divergencies at short distances which
require either an ultraviolet cutoff or a renormalization. It has been pointed out in [8] that
the singular part of the QED finite temperature propagator (describing vacuum fluctuations) at
large time does not contribute to the decoherence in the approximation of a fixed finite number
of electrons.
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In this paper we concentrate on the regular part coming from the thermal bath. We calculate
the time evolution of the density matrix of wavepackets in an approximation of a small charge
e treating the particle dynamics in a semiclassical approximation. We neglect the vacuum
fluctuations considering the effect of thermal photons on the evolution of the density matrix.
The decoherence in an environment of thermal photons is demonstrated. The decoherence rate
is increasing fast with an increase of time and temperature. We discuss a contribution of the
vacuum fluctuations to the evolution of the density matrix (in our approximation to QED) in
the appendix. It is shown that the regularized expression as well as the renormalized one vary
slowly in time and space.

The effect of photons on decoherence has been discussed first by Joos and Zeh [10].
The general arrangement for interference experiments in an environment has been considered
in [11]. The decoherent effect of the black body radiation has been studied by Stapp [12] (we
compare our results with [12] at the end of section 3).

We are interested in QED at finite temperature T determined by the density matrix (the
Gibbs state)

ρ = (Tr(exp(−βHR)))−1 exp(−βHR)
where 1

β
= KT ,K is the Boltzmann constant andHR is the Hamiltonian for the quantum free

electromagnetic field.
We compute the correlation functions explicitly:

Gβ(0,x; t,x′)jl ≡ Tr(Aj (0,x)Al(t,x
′)ρ) = h̄c

π2

∫
dk|k|−1 cos((x − x′)k)δtr

j l(k)

×(cos(c|k|t)
(

1

2
+ (exp(βh̄c|k|)− 1)−1

)
− i

2
sin(c|k|t)) (1)

where

δtr
j l(k) = δjl − kj kl|k|−2.

The term 1
2 h̄c|k| corresponds to the zero-point energy (of vacuum fluctuations) whereas

h̄c|k|(exp(h̄c|k|β)− 1)−1 is the average energy of thermal photons with the wavenumber k.
The vacuum fluctuation (noise) is a measurable effect and in general cannot be neglected. The
virtual photons corresponding to the vacuum fluctuations are not directly observable. Then,
the thermal photons are described by the Green function Gth = Gβ − G∞ (note that Gth is
real, whereas Gβ and G∞ are complex; in quantum field theory the imaginary part of the
Green function is related to the pair creation and annihilation, so subtracting G∞ means that
the processes of pair creation and annihilation are neglected)

Gth(x,x
′, t)jl = h̄c

2π2

∫
dk|k|−1δtr

j l(k) cos((x − x′)k) cos(ct |k|)(exp(βh̄c|k|)− 1)−1. (2)

Let us note thatGth determines the real Gaussian random field. Subsequent computations can
be performed either in the Fock space or by means of the functional integration. We do not
explain the equivalence of both methods here but refer to our earlier paper [9].

For a small |x − x′|

Gth(x,x
′, t)jl 	 Gth(0, 0, t)jl = δjl 4

3 h̄cπ
−1
∫ ∞

0
dk k cos(ckt)(exp(βh̄ck)− 1)−1 (3)

is approximately x-independent.
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2. The semiclassical approximation

We approach the semiclassical limit of the wavefunction in the standard way treating the
electromagnetic field A as a classical field. Then, the quantum electromagnetic field is realized
as a random field with the covariance (2). A solution of the Schrödinger equation

ih̄∂tψ(t,x) = 1

2m

(
−ih̄∇ +

e

c
At

)2
ψ(t,x) (4)

with the initial condition ψ = exp( i
h̄
W)φ can be related to the solution Wτ of the Hamilton–

Jacobi equation

∂tWt +
1

2m

(
∇Wt +

e

c
At

)2
= 0 (5)

with the initial conditionWt=0(x) = W(x). We express ψt in the form

ψt ≡ χtφt = exp

(
i

h̄
Wt

)
φt .

Then, ψt is the solution of equation (4) if and only if φt is the solution of the equation

∂tφt = ih̄

2m
�φt − 1

m

(
∇Wt +

e

c
At

)
∇φt − 1

2m

(
�Wt +

e

c
divAt

)
φt (6)

with the initial condition φ. In a formal limit h̄→ 0 the term �φ can be neglected. In such an
approximation the solution of the Schrödinger equation (4) is expressed by the classical flow
starting from x (here 0 � s � t)

dys

ds
= − 1

m

(
∇Wt−s(ys) +

e

c
At−s(ys)

)
. (7)

Until o(h̄) terms we have

ψ(t,x) = exp

(
i

h̄
Wt(x)

)
exp

(
−
∫ t

0

1

2m

(
�Wt−s(ys) +

e

c
divAt−s(ys)

)
ds

)
φ(yt (x)).

If we know the trajectory (e.g., from the Hamilton equations) then we can computeWt

Wt(x) = W(yt (x)) +
∫ t

0

(
m

2

(
dy

ds

)2

+
e

c
As(ys)

dy

ds

)
ds. (8)

From the correlation functions (2) of A it follows that the assumption that A(t,x) is x-
independent is a good approximation for a non-relativistic motion. For a wavepacket of
momentum p we haveW = px. Hence, approximately

dys

ds
= − 1

m

(
p +

e

c
At−s

)
. (9)

This is a consistent approximation because for the approximate solution of the Hamilton–
Jacobi equation ∇Ws(x) is space independent. Then, for A which is space independent we
have the exact solution of equation (5)

Wt(x) = px − t

2m
p2 − e

2mc
p

∫ t

0
Aτ dτ − e2

2mc2

∫ t

0
A2
τ dτ. (10)

As a result of the evolution in an environment of photons (which are not under an observation)
the pure state

ψ = exp(iW/h̄)φ
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after an average over the states of the quantum electromagnetic field is transformed into a
mixed state with the density matrix

ρt (x,x
′) = 〈ψt(x)ψt (x′)〉 (11)

where the average is over the electromagnetic field.
We combine the approximation (9), (10) of a space-independent A with the exactWt (8)

in the following approximate expression forWt :

Wt(x) = px − t

2m
p2 − e

2mc
p

∫ t

0
Aτ

(
x − τ

m
p
)

dτ. (12)

This expression results from a solution of the equations of motion (7) to the lowest (zeroth)
order in e. Subsequently, Wt in equation (8) is calculated to the first order in e. Inserting
Wt (12) into equation (11) we obtain

ρt (x,x
′) ≡ exp((ipx′ − ipx)/h̄)φ

(
x − t

m
p

)
φ

(
x′ − t

m
p

)
exp(−S)

= exp((ipx′ − ipx)/h̄)φ

(
x − t

m
p

)
φ

(
x′ − t

m
p

)

× exp

(
− e2

m2c2h̄2

∫ t

0
pGth((s − τ)p/m, s − τ)p ds dτ

+
e2

2m2c2h̄2

∫ t

0
pGth(x − x′ + (s − τ)p/m, s − τ)p ds dτ

+
e2

2m2c2h̄2

∫ t

0
pGth(x

′ − x + (s − τ)p/m, s − τ)p ds dτ

)
(13)

where exp(−S) denotes the last factor in equation (13). If the vacuum fluctuations were to be
taken into account then we would need to make the replacementGth → Gβ = Gth +i�F, where
�F is the Feynman causal propagator (in the notation of Bjorken and Drell [13]). However, this
term gives a negligible contribution to the decoherence for a large time. A detailed discussion
of the possible effect on decoherence of vacuum fluctuations, electron–positon pair annihilation
and photon emission in zero-temperature QED can be found in [8]. We discuss the contribution
of vacuum fluctuations to equation (13) in the appendix. We show that this contribution is
negligible because it is slowly varying in space and time t > 0. Hence, at higher temperature
and longer time the thermal part is dominating.

3. The estimates of the evolution of the density matrix

We perform first the integral over time in equation (13). We denote y = x − x′, introduce the
spherical coordinates dk = dk k2 dθ sin θ dφ and write S in the form

S = e2

2πm2ch̄

∫ ∞

0
dk k

∫ π

0
dθ sin θI (θ, k, p)(exp(βh̄ck)− 1)−1. (14)

We restrict ourselves to |p| � mc then

I (θ, k, p) = c−2k−2|p|2(1 − cos2 θ)(2(1 − cos(tck))

−2 cos ky + cos(ky + ckt) + cos(ky − ckt)). (15)

The integral (14) depends on a parameter with the dimension of a length

ldB = ch̄β
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which is called the thermal de Broglie wavelength at temperature T . We could make the
rescaling k → kl−1

dB then the length would be measured in terms of ldB. We shall write that |y|
is large if |y|l−1

dB � 1, similarly time t is large if ctl−1
dB � 1.

If y is large then on the basis of equation (15) the y-dependent terms are small as a
function of t in comparison with other terms, because we have an additional oscillation in y

which makes such a term negligible (unless |y| is comparable with ct). The main contribution
to S for a large y � ct is (we write α = cos θ )

S = 2e2

m2c3h̄π
p2
∫ 1

−1
dα(1 − α2)

∫ ∞

0
dk k−1(1 − cos(tck))(exp(βh̄ck)− 1)−1. (16)

For a small time t (and a large y) we obtain

|ρt | ≈ exp

(
− 2

3

e2

m2h̄cπ
p2t2

∫ ∞

0
dk k(exp(βh̄ck)− 1)−1

)

≈ exp

(
−B e

2

h̄c
(pt/m)2l−2

dB

)
(17)

where B is a constant of order 1. The result (17) means that the decoherence (or simply the
effect of the electromagnetic environment) is visible after a particle makes a path comparable
with the de Broglie wavelength.

Let us consider now a large t � 0 in equation (16). We apply the formula

1 − cosw = w
∫ 1

0
dγ sin(γw)

and the formula (3.911) of Gradshtein and Ryzhik [15]∫ ∞

0
du sin(au)(exp(βu)− 1)−1 = π

2β
coth

(
πa

β

)
− 1

2a
.

Then, we obtain

S = 4

3

te2

m2c2h̄π
p2
∫ 1

0
dγ
∫ ∞

0
dk sin(tckγ )(exp(βh̄ck)− 1)−1

= 4

3

e2

m2c3h̄π
p2
∫ t

0
dγ

(
π

βh̄
coth

(
πγ

βh̄

)
− 1

γ

)

= 4

3

e2

m2c3h̄π
p2 ln

(
βh̄

πt
sinh

(
πt

βh̄

))
≈ |p|2
m2c2

e2

ch̄

ct

ldB
(18)

for a large t such that |y| � ct � ldB.
Let us consider next small t together with a small y. Then, we can set s = τ = 0 in the

argument of Gth in equation (13). In such a case

S 	 e2

m2ch̄π
p2t2

∫ ∞

0
dk k

∫ π

0
dθ sin θ(1 − cos2 θ)(1 − cos(k cos θ |y|))(exp(βh̄ck)− 1)−1.

(19)

Formula (19) is relevant only for a small y (for a large y we return to equation (17)). From
equation (19) for a small y and small t we obtain

ρt (x,x
′) ≈ exp

(
− 2e2

15πm2h̄c
p2t2y2

∫ ∞

0
dk k3(exp(h̄cβk)− 1)−1

)

≈ exp

(
−B e

2

h̄c

(
pt

m

)2

y2l−4
dB

)
(20)
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where B is a constant of order 1. Again we can conclude that the decoherence is visible on
distances comparable to the thermal de Broglie length.

For a large t � |y|/cwe neglect the quickly oscillating t-dependent terms in equation (15).
Then, similarly as in the computations in equation (18) (with α = cos θ )

S = e2

πm2c3h̄
p2|y|

∫ 1

0
dγ
∫ 1

−1
dαα(1 − α2)

∫ ∞

0
dk(exp(βh̄ck)− 1)−1 sin(kγ α|y|)

= 2e2

πm2c3h̄
p2
∫ 1

0
dα(1 − α2) ln

(
βh̄c

πα|y| sinh

(
πα|y|
βh̄c

))
≈ e2

h̄c

p2

m2c2

|y|
ldB

(21)

for a large y such that ct � |y| � ldB.
For a small |y| (and a large t) the t-dependent terms in equation (15) can be neglected.

Then, the integral (14) gives

S = 2

15

e2

πm2c3h̄
|p|2|y|2l−2

dB

∫ ∞

0
dk k(exp k − 1)−1.

Hence,

|ρt | ≈ exp

(
−B e

2

h̄c
|p|2(mc)−2|y|2l−2

dB

)
.

At this point it is useful to recall the definition of the Wigner function

W(q,k) = (2πh̄)−3
∫

du exp(iku/h̄)ρ(q + u/2, q − u/2).

If ρ ≈ exp(− a
2 y2 − ipy/h̄) then

W(q,k) 	 exp

(
− 1

2ah̄2 (p − k)2
)
w(q,k).

Such a behaviour means a localization on the classical momentum p. If (as in equation (18)
for a large time) ρt = exp(−ipy − S) 	 exp(−ipy − bp2t) then approximately

∂tρt ≈ −b[P , [P , ρt ]] (22)

where P = −ih̄∇ is the quantum momentum operator. Then

∂tWt (q,k) ≈ −bk2Wt (q,k).

Let us note that the behaviour (18) of ρt could have been obtained from equation (13) if we
made the approximation

Gth(x − x′, s − τ) ≈ h̄l−1
dB δ(τ − s).

Then, the Schrödinger equation (4) would be approximated by the stochastic Schrödinger
equation [16, 17]

∂tψ = ih̄

2m
�ψ − ie

mch̄
APψ

where A is approximated by the white noise (as a consequence we obtain equation (22)). Such
an approximation for the relict radiation has been discussed by Stapp [12]. It is difficult to
justify it starting from the expressions (2), (3) for Gth. From our results it follows that it can
approximate the behaviour of ρt (x,x′) only if |x − x′| � ct � ldB.

For N -particles with momenta pj we consider the initial state of the form

ψ = exp

(
i

h̄

N∑
j=1

pjxj

)
φ.
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Then, Wt in equation (12) is a sum of the Hamilton–Jacobi functions for each particle. The
subsequent expectation value over the electromagnetic field gives an exponential with a sum of
pairings between the N particles. Hence, it can be expected that ρt behaves as exp(−RN2t2)

for a small t and as exp(−RN2|t |) for a large t with a certain constant R (note that the
behaviour exp(−RN |t |) for another model has been obtained by Unruh [14]). Such a result is
valid for N particles of equal charges under the assumption that the terms in the exponential
of the form (13) have equal signs. The contributions add if the momenta have a distinguished
direction. If the directions are random then the contributions from different particles cancel
one another. A similar cancellation takes place if the system is neutral, i.e. if the charges ej
can have different signs. Then, in the sum in an exponential of the form (13) we shall have
ej ekpjpk multiplyingGth. Hence, there can be cancellations from different charges ej even if
there is a distinguished direction of the momenta. Under an assumption that the contributions
in the exponential do not cancel one another we obtain for a large distance between any pair
of coordinates and a large t

|ρt | ≈ exp

(
−B e

2

ch̄
N2

( |p|
mc

)2
ct

ldB

)

where B is a constant of order 1. The decay is visible at time t if

N2t >
ch̄

e2

(
mc

|p|
)2
ldB

c
.

This time can be short if N is large.

4. Disappearance of the interference

So far we have discussed the decay ofρt (x,x′) for varying t and y = x−x′. The disappearance
of the off-diagonal matrix elements indicates a classical behaviour of quantum probabilities
in the state ρt . We investigate next what happens with the interference describing a typical
quantum phenomenon. We consider a superposition of two wavepackets

ψ(x) = exp(ip(1)x/h̄)φ(1)(x) + exp(ip(2)x/h̄)φ(2)(x).

Then, at the point x (on the screen) after an evolution through a cavity filled with thermal
photons the probability density 〈|ψt(x)|2〉 is equal to the diagonal part of the density matrix

ρt = 〈|ψt 〉〈ψt |〉. (23)

For each packet we have the Hamilton–Jacobi function

Wt(x) = px − t p2

2m
− pe

mc

∫ t

0
A(ys(x), s) ds. (24)

Under the time evolution

ψ → ψt = exp(iW(1)
t /h̄)φ

(1)
t + exp(iW(2)

t /h̄)φ
(2)
t .

In our semiclassical approximation φ(x) → φ(yt (x)). Then, for weak fields we neglect the
dependence of the paths on the electromagnetic field, i.e. we consider straight lines

y(1)s = x − s

m
p(1)

and

y(2)s = x − s

m
p(2).
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In this approximation the expectation value (23) is

〈|ψt(x)|2〉 =
∣∣∣∣φ(1)

(
x − t

m
p(1)

)∣∣∣∣
2

+

∣∣∣∣φ(2)
(

x − t

m
p(2)

)∣∣∣∣
2

+

(
φ(2)

(
x − t

m
p(2)

)
φ(1)

(
x − t

m
p(1)

)

× exp

(
− i

h̄
(p(2) − p(1))x +

it

2mh̄
((p(2))2 − (p(1))2)

)

+ exp

(
i

h̄
(p(2) − p(1))x − it

2mh̄
((p(2))2 − (p(1))2)

)

×φ(1)
(

x − t

m
p(1)

)
φ(2)

(
x − t

m
p(2)

))

× exp

(
e2

2m2c2h̄2

∫ t

0
p(1)Gth

( s
m

p(1) − τ

m
p(2), s − τ

)
p(2) ds dτ

+
e2

2m2c2h̄2

∫ t

0
p(1)Gth(

s

m
p(2) − τ

m
p(1), s − τ)p(2) ds dτ

− e2

2m2c2h̄2

∫ t

0
p(1)Gth

( s
m

p(1) − τ

m
p(1), s − τ

)
p(1) ds dτ

− e2

2m2c2h̄2

∫ t

0
p(2)Gth

( s
m

p(2) − τ

m
p(2), s − τ

)
p(2) ds dτ

)
≡ ρ(1)t + ρ(2)t + ρ(12)

t . (25)

Without detailed calculations we can obtain the behaviour for a small t . The timescale is again
determined by the de Broglie thermal wavelength ldB. However, in Gth in equation (25) the
length enters as a particle path. Hence, time s is small if s|p(k)|/m � ldB for each k. Let
s = τ = 0 in Gth in equation (25), then from equation (3) Gth(0, 0) 	 Bδjlβ

−2h̄−1c−1. It
follows that

|ρ(12)
t | 	 exp

(
−B e

2

h̄c
l−2
dB (t |p(2) − p(1)|/m)2

)
. (26)

Hence, if the decoherence is to be visible the distance between the particles after time t must
be of the order of the de Broglie length. The calculations for a large time are more involved.
Let us denote

|ρ(12)
t | ≡ exp(−S12).

We obtain for S12

S12 = 2

3

e2

πm2c3h̄
|p(2) − p(1)|2

∫ ∞

0

dk

k
(exp(βh̄ck)− 1)−1(1 − cos(tck))

= 2

3

e2

πm2c3h̄
|p(2) − p(1)|2ct

∫ 1

0
dγ
∫ ∞

0
dk(exp(βh̄ck)− 1)−1 sin(γ ckt)

= 2

3

e2

πm2c2h̄
|p(2) − p(1)|2

∫ 1

0
dγ

(
tπ

2βh̄c
coth

(
πγ t

βh̄

)
− 1

2γ c

)

= 1

3

e2

πm2c3h̄
|p(2) − p(1)|2 ln

(
βh̄

πt
sinh

(
tπ

βh̄

))

≈ e2

h̄c

ct

ldB
|p(2) − p(1)|2m−2c−2 (27)
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for a large t . Hence, the mixed term in equation (25) is multiplied by exp(−S12)which decays
as exp(−Rt). Such a behaviour of the probability density proves that the thermal photons lead
to the classical addition of probabilities instead of the quantum addition of amplitudes showing
the decoherence phenomenon in a physical model of an electron–photon interaction.

5. Conclusions

We have discussed a model of a quantum charged particle interacting with a quantum
electromagnetic field at finite temperature. We have calculated the time evolution of the
density matrix in a semiclassical approximation for the wavefunction and in a weak coupling
approximation for the particle–photon interaction. In contradistinction to [4–6] we do not
apply the approximation of a linear coordinate coupling to the environment (rejected also
in [8]). For a small time and small space separations we obtain an exponential in time and
space decay ρt ≈ exp(−bt2|x − x′|2) of off-diagonal matrix elements (decoherence). For a
large time the decay achieves its stationary value (18) and (21). The time and space scale is
determined by the thermal de Broglie wavelength. If we have a large number N of charged
particles then the decoherence rate can increase as N2. The density matrix elements decay as
ρt ≈ exp(−bt) for a large time. Such a behaviour is in agreement with the Lindblad dynamics
if the dissipative part of the dynamics has the form (22). This form of the Lindblad dynamics
in zero temperature QED has also been derived in [8] but with a coefficient vanishing at large
time. Lindblad dynamics of such a form has been discussed earlier in [18, 19]. The Lindblad
dynamics resulting from a linear coordinate coupling to the environment (studied in [4,5]) is of
a different type. It could be described by a replacement of the momentum operator by a position
operator in equation (22) (a coupling to the environment linear in the momentum as well as
in the coordinate has been discussed by Leggett in [20]). We have studied the interference
as another typical aspect of a quantum behaviour. We have shown that in an environment
of photons the interference disappears with an exponential speed (equations (26), (27)). Our
results suggest an arrangement for an experiment. Such experiments could verify the QED
beyond the usual perturbative approximation as well as the principle of the wavefunction
reduction in a non-selective measurement.

Appendix

When the operator formalism is applied then formula (13) results from a representation of the
density matrix expectation values by the expectation values of the time-ordered products of
quantum fields in the Fock space. We use the following conventions of Bjorken and Drell [13]
(T denotes the time-ordered product of vector fields)

〈0|T (A(x ′)A(x))|0〉 = i�F(x
′ − x)

〈0|T (exp(iAJ))|0〉 = exp

(
− i

2
J�FJ

)
.

Then, in our notation

GF(x
′ − x) = i�F(x

′ − x).
In terms of Fourier integrals

�F(x
′ − x) = −ih̄c 1

2 (2π)
−3
∫

dk|k|−1δtr(k) cos(k(x′ − x)) exp(−ic|k||t ′ − t |).
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Then, in equation (13) Gth → Gβ = Gth +GF. Hence, S → S + SF where

SF = e2

m2c2h̄2

∫ t

0
pGF((s − τ)p/m, s − τ)p ds dτ

− e2

2m2c2h̄2

∫ t

0
pGF(x − x′ + (s − τ)p/m, s − τ)p ds dτ

− e2

2m2c2h̄2

∫ t

0
pGF(x

′ − x + (s − τ)p/m, s − τ)p ds dτ

= e2

m2c2h̄2 p2h̄c
1

2
(2π)−3(−i)ct

∫
dk(c2|k|2 − (pk)2/m2)−1

×(1 − cos(k(x′ − x)))

+
e2

m2c2h̄2 p2h̄c
1

2
(2π)−3

∫
dk|k|−1((c|k| + pk/m)−2

×(1 − exp(−it (c|k| + pk/m)))

+(c|k| − pk/m)−2(1 − exp it (c|k| − pk/m)))(1 − cos(k(x′ − x))). (28)

The integrals are finite if we impose the ultraviolet cutoff |k| � /. It supplies a length scale
/−1. With the cutoff | exp(−SF)| behaves as follows: if t � |x − x′|/c and |x − x′| < /−1

then

| exp(−SF)| ≈ exp(−a|x − x′|2).
If |x − x′| � c|t | and |t | < (c/)−1 then

| exp(−SF)| ≈ exp(−ac2|t |2).
If |x − x′| < /−1 and |t | < (c/)−1 then

| exp(−SF)| ≈ exp(−bc2t2|x − x′|2)
with certain constants a and b. When t → ∞ or |x − x′| → ∞ then Re SF tends
(logarithmically) to a constant on the basis of the Lebesgue theorem. We can choose the
length scale /−1 arbitrarily small then the variation of SF is negligible in comparison to the
variation of the thermal part.

We can renormalize SF by a subtraction of an infinite part Sc:

Sc = e2

m2c2h̄2 p2h̄c
1

2
(2π)−3(−i)ct

∫
dk(c2|k|2 − (pk)2/m2)−1

+
e2

m2c2h̄2 p2h̄c
1

2
(2π)−3

∫
dk|k|−1((c|k| + pk/m)−2

+(c|k| − pk/m)−2). (29)

It seems that in exp(−S) the first term in equation (29) (being purely imaginary) could be
absorbed into the charge renormalization of the wavepacket in equations (12), (13) whereas
the second one could be interpreted as the wavefunction renormalization (a renormalization
of the normalization constant for the wavepacket; however, it remains unclear whether
this renormalization coincides with the one of the complete relativistic QED). After the
renormalization we obtain

S
(ren)
F = e2

m2c2h̄2 p2h̄c
1

2
(2π)−3ict

∫
dk((c2|k|2 − (pk)2/m2)−1 cos(k(x′ − x)))

− e2

m2c2h̄2 p2h̄c
1

2
(2π)−3

∫
dk|k|−1((c|k| + pk/m)−2
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×(1 − exp(−it (c|k| + pk/m)))

+(c|k| − pk/m)−2(1 − exp it (c|k| − pk/m))) cos(k(x′ − x))

− e2

m2c2h̄2 p2h̄c
1

2
(2π)−3

∫
dk|k|−1((c|k| + pk/m)−2

× exp(−it (c|k| + pk/m))

+(c|k| − pk/m)−2 exp it (c|k| − pk/m)). (30)

This expression is finite if t �= 0 and x �= x′ owing to the oscillations of the trigonometric
functions. However, we obtain an infinite expression for t = 0 or x = x′.

If t � |x−x′|/c > 0 or |x−x′| � ct > 0 then Re S(ren)
F ≈ ln(ct |x−x′|−1). Such a slow

logarithmic variation holds true close to the light cone as well. When t → 0 or |x − x′| → 0
then Re S(ren)

F diverges logarithmically. We can conclude that the slow logarithmic variation
of Re SF for t �= 0 and x �= x′ can be neglected in comparison to the faster variation of the
thermal part.
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